10 research outputs found

    Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>R </it>locus controls the color of pigmented soybean (<it>Glycine max</it>) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (<it>iRT</it>) and brown (<it>irT</it>) soybean (<it>Glycine max</it>) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase (<it>UGT78K1</it>) from the seed coat of black (<it>iRT</it>) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether <it>UGT78K1 </it>was overexpressed with anthocyanin biosynthesis in the black (<it>iRT</it>) seed coat compared to the nearly-isogenic brown (<it>irT</it>) tissue.</p> <p>In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.</p> <p>Results</p> <p>Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (<it>iRT</it>) or the brown (<it>irT</it>) seed coat. A global analysis of gene expressions identified <it>UGT78K1 </it>and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis <it>in vitro </it>and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (<it>iRT</it>) seed coat development.</p> <p>Conclusion</p> <p>Metabolite composition and gene expression differences between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats, and <it>UGT78K2 </it>and <it>OMT5 </it>were validated to code UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase and anthocyanin 3'-<it>O</it>-methyltransferase proteins <it>in vitro</it>, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (<it>iRT</it>) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.</p

    Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola

    No full text
    To avoid pathogen-associated molecular pattern recognition, the hemibiotrophic maize pathogen Colletotrichum graminicola secretes proteins mediating the establishment of biotrophy. Targeted deletion of 26 individual candidate genes and seven gene clusters comprising 32 genes of C. graminicola identified a pathogenicity cluster (CLU5) of five co-linear genes, all of which, with the exception of CLU5b, encode secreted proteins. Targeted deletion of all genes of CLU5 revealed that CLU5a and CLU5d are required for full appressorial penetration competence, with virulence deficiencies independent of the host genotype and organ inoculated. Cytorrhysis experiments and microscopy showed that Delta clu5a mutants form pressurized appressoria, but they are hampered in forming penetration pores and fail to differentiate a penetration peg. Whereas Delta clu5d mutants elicited WT-like papillae, albeit at increased frequencies, papillae induced by Delta clu5a mutants were much smaller than those elicited by the WT. Synteny of CLU5 is not only conserved in Colletotrichum spp. but also in additional species of Sordariomycetes including insect pathogens and saprophytes suggesting importance of CLU5 for fungal biology. Since CLU5a and CLU5d also occur in non-pathogenic fungi and since they are expressed prior to plant invasion and even in vegetative hyphae, the encoded proteins probably do not act primarily as effectors
    corecore